Code No: **R20A7305**

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

IV B.Tech I Semester Supplementary Examinations, April 2025

Computer Vision

(B.Tech-AIDS & B.Tech-AIML)									
Roll No									

Time: 3 hours

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

1	A	SECTION-I Explain the role of shading models (such as Phong and Lambartian shading) in informing surface properties	BCLL L2	CO(s) CO-I	Marks [7M]
	В	Discuss the role of color models (such as RGB, HSV, and CIELAB) in digital imaging and how they relate to human perception.	L2	CO-I	[7M]
2	A	Compare linear and non-linear calibration approaches, discussing their methodologies, advantages, and limitations.	L2	CO-I	[7M]
	В	Explain specific examples of technologies that rely on geometric camera calibration and modeling for success. SECTION-II	L2	CO-I	[7M]
3	A	Discuss how the Fourier Transform decomposes an image into its frequency components and the implications for filtering and image compression	L2	CO-II	[7M]
	В	Explain the concept of local texture representations and the role of filters in capturing texture information in images. OR	L2	CO-II	[7M]
4	A	Analyze the applications of correlation in feature detection and template matching. Provide examples of practical applications where template matching is used effectively.	L4	CO-II	[7M]
	В	Describe the principles behind the shape-from-texture technique and how it utilizes texture gradients to infer 3D shape information from 2D images.	L3	CO-II	[7M]
5	A	Discuss the fundamental principles of basic clustering methods used for image segmentation.	L2	CO-III	[7M]
	В	Explain the challenges associated with accurately modeling curves in images and the importance of these techniques in applications such as shape recognition and object tracking. OR	L2	CO-III	[7M]
6	A	Discuss the impact of selecting the number of clusters (K) on segmentation results and explore strategies to determine the optimal K.	L2	CO-III	[7M]

R20

	B	Analyze the fitting lines with Hough transform.	L4	CO-III	[7M]
7	A	List the key differences between registration techniques for rigid and deformable objects.	L2	CO-IV	[6M]
	В	Explain the methodologies behind object matching using interpretation trees and spin images. How do these techniques improve the robustness and accuracy of object recognition systems?	L2	CO-IV	[8M]
		OR			
8	A	What are the practical implications of Koenderink's Theorem in computer graphics and visual perception? Explain	L2	CO-IV	[7M]
	В	Discuss different approaches to minimize error and loss, including data augmentation and advanced training techniques. SECTION-V	L2	CO-IV	[7M]
9	A	What are the challenges associated with face detection in different environments (e.g., varying lighting, occlusions)? Discuss the importance of accuracy and speed in real-time applications.	L2	CO-V	[7M]
	B	Discuss the detection of objects in images with algorithm The sliding window method.	L2	CO-V	[7M]
		OR			
10	A	Explain the methodologies for detecting humans in images, including background subtraction, pose estimation, and advanced deep learning models.	L2	CO-V	[7M]
	В	Describe the role of feature extraction and representation in enhancing recognition performance. Include real-world applications where accurate categorization is crucial.	L3	CO-V	[7M]
